NST-628 is a Novel, Potent, Fully Brain-Penetrant MAPK Pathway Molecular Glue that Inhibits RAS- and RAF-Driven Cancers

Klaus Hoeflich, PhD
Chief Scientific Officer
Nested Therapeutics, Cambridge, MA
Disclosure Information

Klaus Hoeflich

I have the following relevant financial relationships to disclose:
 Co-Founder, employee: Nested Therapeutics
 Stockholder: Nested Therapeutics

My additional financial relationship disclosures are:
 Advisor and stockholder: Turbine AI
RAS/MAPK Pathway Is the Heartland of Cancer Research, but a High Degree of Unmet Need Persists

>80% of RAS mutations not addressed by current or research-stage precision treatments

PATIENTS BY MUTATION CLASS

<table>
<thead>
<tr>
<th>MUTATION CLASS</th>
<th>PATIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF Class I</td>
<td>15%</td>
</tr>
<tr>
<td>KRAS G12C</td>
<td>5%</td>
</tr>
<tr>
<td>KRAS non-G12C</td>
<td>29%</td>
</tr>
<tr>
<td>MAP2K1</td>
<td>4%</td>
</tr>
<tr>
<td>HRAS</td>
<td>5%</td>
</tr>
<tr>
<td>BRAF Class II/III</td>
<td>9%</td>
</tr>
<tr>
<td>NRAS</td>
<td>12%</td>
</tr>
<tr>
<td>NF1</td>
<td>21%</td>
</tr>
</tbody>
</table>

RAS INHIBITORS HAVE LIMITATIONS

Mutant-specific KRAS inhibitors have reduced ORR and PFS compared to other targeted therapies in the same tumor types.

Polyclonal resistance observed for KRAS inhibitors in the clinic. NST-628 MOI is effective for these mutant tumors.

Drs. Jessica Lin and Ryan Corcoran (MGH)
Current Therapies Are Vulnerable to Reactivation

- **PARADOXICAL REACTIVATION**
 - e.g., RAF type I/II inhibitors

- **FEEDBACK REACTIVATION**
 - e.g., MEK inhibitors

- **BYPASS REACTIVATION**
 - e.g., KRAS inhibitors

RAF Heterodimers

Tumor Growth, Resistance, and Escape
NST-628 Addresses Paradoxical Reactivation of MAPK Pathway by Preventing RAF Heterodimers

Prevents RAF paralog heterodimerization by stabilization and inactivation of CRAF-MEK, BRAF-MEK and ARAF-MEK complexes

Fully brain penetrant MEK/pan-RAF molecular glue shuts down MEK and ERK phosphorylation
NST-628 Modulates pan-RAF-MEK Complexes by Engaging Paralog-Specific Pocket Features
NST-628 is a Highly Potent and Selective pan-RAF-MEK Molecular Glue

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>NST-628</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phospho-MEK, HCT116<sup>KRASG13D</sup> (IC<sub>50</sub>)</td>
<td>0.3 nM</td>
</tr>
<tr>
<td>Cell TiterGlo, HCT116<sup>KRASG13D</sup> (IC<sub>50</sub>)</td>
<td>20 nM</td>
</tr>
<tr>
<td>Selectivity (proteomics, kinase panel)</td>
<td>Only MEK/RAF</td>
</tr>
<tr>
<td>hERG inhibition to 30 uM</td>
<td>Clean</td>
</tr>
<tr>
<td>Off target panel to 10 uM (n=44)</td>
<td>Clean</td>
</tr>
<tr>
<td>Cardiac ion channel to 30 uM</td>
<td>Clean</td>
</tr>
<tr>
<td>CYP DDIs (7 isoforms), TDI</td>
<td>>19 uM, Clean</td>
</tr>
<tr>
<td>Oral bioavailability (all species)</td>
<td>>50%</td>
</tr>
<tr>
<td>Predicted clinical CL (mK/min/Kg), t<sub>1/2</sub> (h)</td>
<td>0.33 / 10-12h</td>
</tr>
<tr>
<td>Rat K<sub>p,uu</sub></td>
<td>1.3</td>
</tr>
<tr>
<td>Phototoxicity potential</td>
<td>Low</td>
</tr>
</tbody>
</table>

NST-628

SPR-based ternary complex assay quantifies increase in affinity between RAF and MEK by NST-628

GST-CRAF immobilized and MEK1 titrated in presence/absence of NST-628

Nested Therapeutics – DO NOT POST - AACR 2024
NST-628 Prevents Formation of RAF Heterodimers, Thereby Suppressing Pathway Reactivation

NEST-628 pan-RAF-MEK endogenous ternary complexes

<table>
<thead>
<tr>
<th>nM</th>
<th>ARAF</th>
<th>BRAF</th>
<th>CRAF</th>
<th>pMEK</th>
<th>MEK1</th>
<th>pERK</th>
<th>Vinculin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NST-628 does not induce RAF heterodimer formation

NST-628 Superior Efficacy in RAF Dimer-Dependent Cancer Cells

* NST-628 potency also broadly observed across RAS pathway biomarkers in 550 cell line panel

HCT-116 (KRAS G13D), BRAF or MEK IP (endogenous), 100 nM, 2 h treatment
Similar ternary complexes observed for BRAF, CRAF and ARAF IPs
Significant Anti-Tumor Activity & Prolonged Survival in RAS or RAF mutant PDX models by NST-628

- 3 mg/kg QD NST-628 dose matches start of projected clinical efficacy
- Each tumor normalized to D0 starting size

• ORR: 16/26 models (61.5%) ≤ -30% tumor regression
• DCR: 22/26 models (84.6%) ≤ 20% tumor outgrowth

RAS/RAF-MUTANT ANTI-TUMOR EFFICACY

RAS/RAF-MUTANT PROGRESSION FREE SURVIVAL

Log-rank p= <0.0001 (****)
NST-628 ADME/PK Properties Optimized for Anti-Tumor Activity and Therapeutic Index in Patients

- 90% of pERK inhibition for 10-12 hours by NST-628 led to tumor regression in preclinical tumor models
- QD oral doses >2 mg predicted to be clinically efficacious with steady-state C_min achieving efficacious concentrations (20-30 ng/mL)
- NST-628 is amenable to flexible dosing schedules to optimize anti-tumor activity and therapeutic index
NST-628 has Broad Efficacy without Sacrificing Tolerability at Clinically Achievable Exposures

- NST-628 treatment results in higher response rate and is better tolerated than trametinib or Avutometinib
- Trametinib and Avutometinib doses selected based on clinically achievable drug exposures

* No body weight loss or skin keratinization observed in any NST-628 treated animals

ANTI-TUMOR ACTIVITY

TOLERABILITY

- Vehicle
- Trametinib (0.3 mg/kg QD)
- Trametinib (1 mg/kg QD)
- Avutometinib (0.3 mg/kg QD)
- Avutometinib (1 mg/kg QD)
- NST-628 (3 mg/kg QD)
- NST-628 (5 mg/kg QD)
- NST-628 (1.5 mg/kg BID)

HTC-116 (KRAS G13D) tumor xenograft model
NST-628 has Superior Pathway Inhibition and Anti-Tumor Efficacy in Intracranial Tumors

NST-628 Demonstrates Superior CNS PK/PD

Non-tumor bearing mice (fully intact blood-brain barrier)

Plasma concentration and phospho-ERK in mouse brain tissue measured 4 h after single dose

Only NST-628 inhibits phospho-ERK in mouse brain tissue at comparable plasma concentration

NST-628 Reduces the Size of NRAS-mutant Brain Tumors In Mice

SK-MEL-2-Luc, NRAS Q61R, Melanoma

SK-MEL-2-Luc intracranial tumors treated with indicated inhibitors and tumor volume measured by bioluminescence (BLI)

NST-628 Inhibits the RAS MAPK Pathway and Growth of NF1-mutant Brain Tumors in Mice

MeWo-Luc, NF1 Q1336* Melanoma

MeWo-Luc intracranial tumors implanted in NOD SCID mice treated with indicated inhibitors and tumor volume measured by bioluminescence (BLI)

Tovorafenib accelerates tumor growth due to paradoxical RAF reactivation in RAS-driven cancers

Nested Therapeutics – DO NOT POST - AACR 2024
NST-628 Differentiation (Broad Efficacy, Superior Drug Properties) Warrants Clinical Exploration

CLINICAL DEVELOPMENT FOCUS

- **RAS**: Robust pre-clinical data across tumor histologies with KRAS and NRAS codon mutations
- **BRAF**: Superior activity in select Class II and III mutant malignancies
- **High CNS exposure**: Offers efficacy for patients with primary CNS malignancies and CNS metastases
- **Optimal half-life (10-12 h)**: Offers superior therapeutic index and dosing optionality

DEVELOPMENT STRATEGY

- **Vertical Combinations**: 1st Line of Targeted Tx for K/NRAS
- **I/O & Other 1L SOC Combinations**: Indication and Biomarker Expansion
- **Advance Treatment Paradigms**: NRAS and BRAF Class II/III Solid Tumors
- **Establish Rapid POC**: Build Franchise Lifecycle

Nested Therapeutics – DO NOT POST - AACR 2024
GLP toxicology studies demonstrate improved exposure margins vs. MEKi’s in both non-clinical species.

Phase 1 clinical studies initiated (NCT06326411)

Fully Brain Penetrant

- Allows treatment of brain metastases;
- Only RAS/MAPK inhibitor with full intrinsic brain penetration

Superior Risk/ Benefit Profile vs. Other Pathway Combination Therapy

- Potential for monotherapy and to become backbone for various combination approaches

Broad Addressable Biomarker Populations that Have No Targeted Treatment Options as of Today

- BRAF class II and III, NRAS, KRAS, NF-1, MAP2K1, HRAS

MEK/PAN-RAF Glue

- High potency and selectivity
- Potent stabilization of CRAF-MEK, BRAF-MEK and ARAF-MEK complexes
- Lack of paradoxical pathway activation through prevention of RAF paralog heterodimerization
- Balanced metabolic profile to maximize therapeutic index and provide dosing flexibility in clinic

Nested Therapeutics – DO NOT POST - AACR 2024
Acknowledgements

Drug Discovery
Yongxin Han

Project Leadership
Margit Hagel
Michael Hale
Meagan Ryan

Clinical Development
Philip Komarnitsky

Nested Co-Founders
Arvin Dar, MSKCC
Kevan Shokat, UCSF

Nested SAB
Ryan Corcoran, MGH

NST-628 Project Team
Ahmad Al Kawam
John Clark
Steven Cohen
Zhong Fang
Beth Gunning
Xin Huang
Ann Marie Kennedy
Matthew Koehler
Aadithya Krishnan
Chun Li
Daniel Ortwine
Ayşegül Özen
Bradley Quade
M. Stella Ritorto
Natasha Schenk
Oleg Schmidt
Brooke Swalm
Dietrich Steinhuebel
Kim Stickland
Kerren Swinger
Tina Talreja
Chaoyang Ye
Marshall Zingg
Julia Zhu

Thank you to the patients and their families enrolled in the NST-628 clinical trial

Nested Therapeutics – DO NOT POST - AACR 2024